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Abstract 

This study discusses the characteristics of lee waves in a vertical ocean slice 
model. To analyse the characteristics, this study applies two different scenarios; 
the first scenario employs a vertical ocean slice model with a uniform depth of 
100 m and a width of 500 m and the second scenario uses the same model but 
considering an undersea mountain having a width of 100 m and a height of 40 m. 
Simulations on motions of the waves are generated by using a numerical method. 
Both scenarios implement the same force, which is the sea level gradient force 
that is maintained until the end of simulation time. In order to observe the 
significance of Courant-Friedrichs-Lewy (CFL) condition, numerical 
experiments are conducted using two values of time step sizes, ∆t = 0.1 second, 
which is obtained based on the CFL and ∆t = 1 second, which is chosen outside 
the interval of CFL criterion. The results of the experiments show that applying 
different values of the time step sizes do not significantly affect the resulting 
waves for the first scenario while it gives different outputs for the second 
scenario. The results in the first scenario present that the currents move 
horizontally and their velocities speed up over time while the values of water 
densities do not change throughout the simulation time. In the second scenario, 
the horizontal and vertical currents continuously change causing disturbances to 
the densities. From Fast Fourier Transform analysis, it is obtained that at depths 
of the surface level to 60 m, the magnitudes of carrier waves in the second 
scenario is greater than the magnitude of the first scenario, while at depths of 
below 60 m, the magnitude of carrier waves from the first scenario is greater than 
the magnitude of the second scenario. 

Keywords: Current, Density, Fast Fourier transform, Lee waves, Nonhydrostatic 
model. 
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1.  Introduction 
Mountain waves or lee waves are atmospheric internal gravity waves, which occur 
above mountains. The existence of the waves was discovered in 1933 by German 
glider pilots. Winds that push air parcels into obstacles like mountains deflect 
upward in a stably stratified atmosphere. The moving winds then return to its initial 
height to form up-down oscillating movements [1]. Sometimes, Mountain waves 
appear in cloud formations. Large-amplitude mountain waves can produce clear-
air-turbulence, which poses a great danger to flights. Large-amplitude mountain 
waves can also generate very strong winds [2]. 

In ocean interior, when stably stratified water rises, a buoyancy perturbation 
occurs on undersea mountains. The perturbations often trigger density changes 
which, are conveyed to locations far from the mountains. These changes form 
waves known as gravity (or buoyancy) waves. Gravity waves triggered by the flows 
above the mountains are called mountain waves of lee waves. 

A trapped nonlinear lee wave can grow up to 200 m wide and span a few 
kilometres away from the mountains during strong off-ridge flow [3, 4]. Due to this 
phenomenon, the presence of lee waves may be seriously dangerous to air traffics 
and undersea operations [4, 5]. 

Lee waves potentially propagate over large horizontal distances as well as in 
vertical direction through columns to a height far above the lower boundary layer. 
This process allows the waves to store energy for mixing in locations far from 
the bottom topographic features [6]. This event has crucial implications because 
the vertical distribution of the mixing strongly influences the simulated general 
circulation [7]. 

In contrast to the waves on the sea-surface, lee waves are not directly visible to 
the eye. In the deep oceans, lee waves are generated in stratified fluid through an 
interaction of deep geostrophic currents and undersea mountains or sills [8, 9]. Lee 
waves have a frequency between local inertial frequency and buoyancy frequency, 
which can be formed in strong bottom flow region and supercritical mount flank 
(the internal tidal wave slope is smaller compared to the bottom slope) [9, 10]. It 
was reported that in the region of supercritical mount flank of the tropical Indian 
Ocean, the vertical wavelength reached up to 30 meters [10].  

Garabato et al. [8] mentioned that through wave drag, momentum and vorticity 
from the geostrophic flows are extracted by lee waves. When lee waves, which are 
caused by shear or convective instabilities break, energy, which is converted from 
geostrophic motions into lee waves dissipates [8, 11, 12].  

Topographic internal lee wave and quadratic bottom boundary layer drag 
produce most of the dissipated energy in oceans. The dissipated energy may 
dissipate due to the effects of abyssal currents and stratification. According to 
Trossman et al. [12, 13], in a mixed layer, the energy dissipation is closely related 
to vertical viscosity. 

The strong lee wave generation can be seen on the main sill of the Strait of 
Gibraltar (Caraminal Sill) [14, 15] and in the Southern Ocean [16, 17]. When lee 
waves of Caraminal Sill have been developed, the amplitudes of the internal waves 
are relatively high and chaotic [14]. The internal lee wave formation, radiation, and 
breaking are believed to contribute to the oceanic momentum, vorticity, energy 
budgets [5, 8, 12] and water mass transformation in the Southern Ocean [16]. 
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Lee waves are considered to play an important role in the dynamics of the 
Southern Ocean because they facilitate the transfer of energy from Antarctic Flow 
jets to micro-scale and turbulent movements of water masses [9]. Diapycnal 
mixing in the ocean may also be formed by lee waves although it indirectly 
changes the densities [13, 18]. Diapycnal mixing takes a role in forming ocean 
stratifications and meridional overturning circulation (MOC) [19-22]. Lee waves 
may also produce nonlinear water transport [23] and manifest hydraulic jump in 
oceans [10]. Therefore, it is important to consider lee wave-driven mixing in 
ocean and climate modelling. Marshall and Speer [19] presented the research 
employing a model by which includes the evolution of internal lee waves-driven 
mixing in changing ocean. 

Some studies on lee wave phenomena have been conducted by some 
researchers. Hoosegood et al. [10] observed lee waves by measuring mooring in 
the region of summits and flanks of two neighbouring seamounts in the tropical 
Indian. They studied the connection between lee waves and aggregation of silvertip 
sharks. Trossman et al. [12, 13] analysed the impact of parameterized internal lee 
wave drags on global ocean general circulation model forced by winds and air-sea 
buoyancy fluxes. Shakespeare and Hogg [24] developed an internal wave boundary 
theory, which focused on simulations of steady lee waves, which were generated 
by big-scale currents flowing under the sea. Moreover, they established a 
connection among lee waves, viscosity and diffuseness.  

Study on lee waves on the main sill of Gibraltar Strait based on measurement 
from ship-mounted ADCP and multi-probe CTD by using numerical solution of 
Taylor-Goldstein equation was conducted by del Rosario et al. [14, 15]. Vlasenko 
et al. [23] studied internal lee waves, which were generated by tidal waves in a 
Fjords’ sea by implementing numerical nonhydrostatic model from laterally 
averaged Reynolds equations. They considered the effects of stratifications, 
undersea variables, and cross-section variables. A linear theory about physical 
conditions of the main sill in the Strait of Gibraltar as the effect of big internal lee 
waves was also developed by del Rosario and Odriozola [15]. Cusack et al. [9] 
documented characteristics, energy fluxes, horizontal momentum, and energy 
dissipation in the Southern Ocean from an observation. Meanwhile, Fortin et al. 
[22] analysed internal waves in Costa Rica water based on seismic imaging. 

Observations on lee waves are difficult to conduct by using standard 
oceanographical measurement methods because of the limited spatial extent of standing 
lee waves [22]. Also, the solution of the hyperbolic equation such as the advection 
equation of lee waves is difficult to resolve by an analytic approximation [25]. 

Reciprocally, to observe breaking internal waves requires a model with a high 
spatial resolution. Therefore, an investigation using nonhydrostatic model in 
simulating lee waves is needed. This model can be applied to resolve breaking 
internal wave problems. This study aims to observe the lee wave phenomenon, 
which is resulted from an interaction between stratification and undersea variables. 
Simulations employ nonhydrostatic model, which was developed by Kämpf [26]. 
The models were derived from the Navier-Stokes equations with hydrostatic and 
nonhydrostatic components.  

The Navier-Stokes equations are powerful for studying the hydrodynamic 
behaviour and heat transfer. Yari et al. [27] have applied the Navier-Stokes 
equation to determine the thermal efficiency of the system. 
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In our study, the simulations are generated by numerical approach and CFL 
(Courant-Friedrichs-Lewy) stability parameter is considered in order to analyse its 
significance in generating lee waves. Moreover, characteristics of lee waves are 
analysed by generating the Fast Fourier Transform (FFT) from the time series of 
density waves. 

Studies on characteristics of lee waves in stratified fluids are still rarely 
conducted, especially the ones happening in the ocean. Through this study, 
mechanisms of lee wave generation in the ocean can be observed. Furthermore, the 
obtained results may be beneficial for further studies in marine energy. 

Marine energy is substantial in energy saving for coastal countries especially 
nowadays when energy is a vital requirement in sustainable development [28]. 
Although it requires a relatively large amount of effort, renewable energy can be 
obtained more from marine energy than from solar energy, which depends on 
daylight hours [29]. Moreover, ocean energy has higher density compared to wind 
energy, which means that the power produced by the ocean is higher than the one 
from the wind. The existence of marine energy is rather easy to predict and highly 
beneficial for regions with limited area.  

To date, searching for energy in the ocean such as tidal energy is based on the 
amplitude of the tidal waves. Site selection for tidal and wind-driven energy in the 
ocean should consider the amplitudes of the current [30]. Since the current 
magnitude is influenced by the undersea mountain, the site location of current 
energy should consider lee waves as well. 

Furthermore, on an extension study of lee waves, research on a nanofluid flow such 
as fluid thermal conductivity and heat transfer [31-33] may consider disturbances like 
the ones that occur in lee wave dynamics for real-world problems.  

This paper is organized as follows: Section 2 introduces the research methods 
and model description. The results are analysed in Section 3, which includes the 
simulation results based on two scenarios applied in this research, the significance 
of CFL in the numerical simulation, and the density changes observed through the 
resulting FFT. Finally, Section 4 gives a summary of the research. 

2.  Research Methods and Model Descriptions  

2.1.  Basic equations 
The equation of motion for non-hydrostatic layered fluid developed by Kampf [26] 
is used to simulate the vertical ocean slice model. Finite difference method is 
applied to solve the equations and generate simulations. The equations used for the 
vertical ocean slice read: 
𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − (𝜌𝜌−𝜌𝜌𝑜𝑜)
 𝜌𝜌𝑜𝑜

𝑔𝑔                                                                                                  (6) 

Equations (1)-(6) comprise the momentum velocity Eqs. (1) and (2), density Eq. 
(3), continuity Eq. (4), hydrostatic Eq. (5), and nonhydrostatic pressure field Eq. 
(6). Equation (1) represents the horizontal momentum velocity (u) while Eq. (2) 
represents the vertical momentum velocity (v). These equations consist of local and 
nonlinear terms on the left-hand side and force pressure gradient term on the right-
hand side. The hydrostatic (p) and nonhydrostatic pressure field (q) occur in the 
horizontal momentum while it is only nonhydrostatic pressure field existing in the 
vertical momentum. The nonhydrostatic pressure field is forced by the sloping sea 
level and arises from nonhydrostatic effects. The nonhydrostatic pressure field Eq. 
(6) can be solved in two steps, explicit prediction of the initial pressure and implicit 
prediction of the pressure correction (𝑞𝑞 →  𝑞𝑞𝑛𝑛 +  𝛥𝛥𝑞𝑞𝑛𝑛+1). The implicit solution has 
to be free from divergent condition based on Eq. (4). The momentum velocities and 
densities can be computed after predicted solutions for the hydrostatic Eq. (5) and 
nonhydrostatic pressure field Eq. (6) are obtained. 

2.2.  Two different scenarios 
The solution to the basic equations above is applied to two different scenarios. In 
the first scenario, the domain of the vertical ocean slice model has a length of 500 
m and a uniform depth of 100 m (Fig. 1). 

In the second scenario, the vertical ocean slice model domain also has a length 
of 500 m and a depth of 100 m; however, it has an undersea width of 100 m and a 
height of 40 m (Fig. 2). This undersea mountain forms a cosine function with the 
midpoint at the position x = 150 m. 

 
Fig. 1. Initial condition for the first scenario with increasing 

linear density difference (hereafter density difference is called density). 
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Fig. 2. Initial condition for the second  

 scenario with increasing linear density. 

In both scenarios, the model is discretized with Δx = 5 m and Δz = 5 m. The 
initial condition of scenarios consists of the reference density, ρ0 = 1028 kg/m3 
and the density value that increases linearly from the surface to the bottom layer 
based on initial stability frequency (𝑁𝑁2 = 5 × 10−4𝑠𝑠−2) with the diffusivity of 
horizontal and vertical densities are the same (Kh = Kz = 1 × 10-4 m2/s) 
(Appendix A). 

In the open boundary, the model is forced in the form of the sea level gradient 
(0.5 cm) along the x-axis (horizontal). This force propagates to the positive x-axis. 
Because there is an effect of the sea level gradient, Eq. (1) is added with forcing 
term = −𝑔𝑔 𝜕𝜕𝜂𝜂𝑜𝑜

𝜕𝜕𝜕𝜕
 in the 𝑢𝑢-momentum equation. For lateral boundaries, the cyclic 

boundary conditions are applied [26]. 

The nonhydrostatic pressure field is calculated by the Successive Over-
Relaxation (SOR) method) (Appendix B). The pressure accuracy for the SOR 
iteration is set to 1 x 10-3. The total simulation time is 300 minutes and we save 
results every 30 seconds. To determine the time step size ∆t, which respects to CFL 
condition, the following formula is applied. 

∆𝑡𝑡 ≤  ∆𝑥𝑥
�𝑔𝑔ℎ𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                                         (7) 

For ∆x = 5 m, g = 9.81 m/s2 and hmax = 100 m, it is obtained that ∆𝑡𝑡 ≤ 0.16. In 
order to see the effect of CFL criterion in this numerical experiments, two-time step 
sizes are chosen, which are Δt = 0.1 second, which is in respect to the CFL condition 
and Δt =1 second, which is not in respect to the CFL condition. 

In the two scenarios, in order to see the changes in densities, the wave analysis 
is used through generating the density time-series at a certain spatial position. This 
analysis is only performed for the simulation using Δt = 0.1 second, which is in 
respect to the CFL condition. 
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To summarize, the experiments are carried out as follows:  
• Setting the topography for the first and second scenarios. 
• Implementing the same force for both scenarios. 
• Running both topographies by using two choices of time step sizes, ∆t = 0.1 

second and ∆t = 1 second in order to inspect the effect of CFL to the outputs. 
• Analysing the significance of CFL by comparing the outputs from simulation 

using ∆t = 0.1 second and ∆t = 1 second for each scenario.  
• Drawing conclusions from the outputs of the four conditions, which are the 

first scenario with ∆t = 0.1 second and ∆t = 1 second, and the second scenario 
with ∆t = 0.1 second and ∆t = 1 second. 

• Generating FFT for the first and second scenarios with ∆t = 0.1 second to 
analyse the amplitude change in the lee wave dynamics. 

3.  Results and Discussion 

3.1.  The first scenario 
In the first scenario, the currents move horizontally with the same relative velocities 
and directions at each layer of density. The value of the density increases with depth.  

Figure 3 displays the currents downstream in each density layers for the first 
scenario where no mountain exists on the seabed. The outputs in the figure were 
generated by applying Δt = 0.1 second. The figure indicates that the velocities of 
the currents are uniform in each layer of depth for each simulation time. However, 
the velocities increase over time. In Fig. 3(a), the currents’ uniform velocity starts 
at a small value. It gradually increases during the simulation time and reaches a 
velocity greater than 1 m/s after 5 hours (Fig. 3(a) to (d)). In this scenario, the values 
of the density are the same as the initial model; at each layer, there are no density 
alterations from the beginning until the end of the simulation. 

The simulation employing the value Δt = 1 second generates outputs exhibited 
in Fig. 4. The outputs in Fig. 4 show a similar event with the ones in Fig. 3. The 
currents stream down at the same velocity in each layer of depth, but the uniform 
velocity gradually increases during the observation time. In the meantime, the 
density values in each layer do not change throughout the recorded time. 

However, although Figs. 3 and 4 show alike results, the values of the velocities 
in Fig. 4 are slightly stronger than the ones in Fig. 3. Figure 5 exhibits the currents’ 
velocity differences, which are not constant over time. As the time runs, the currents’ 
velocity differences assuredly increase, yet the overall currents’ velocity 
differences at each recorded time are very small and no density difference is visible 
(Figs. 5(a) to (d)).  

Until the end of simulation time, the differences of current velocities 
between the simulation using Δt = 0.1 second and the simulation using Δt = 1 
second only reach the value of 0.004 m/s and the direction of the current 
consistently to the west. Since we use the formula v∆t=0.1 - v∆t  = 1, where v∆t = 0.1 is 
velocity using Δt = 0.1 second and v∆t  = 1 is velocity using Δt = 1 second, it can be 
stated that the magnitude of current velocities at Δt = 1 second (v∆t = 1) is bigger than 
that of current velocities at Δt = 0.1 second (v∆t = 0.1). While the density values from 
both simulations are the same. 
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(a) Simulation time t = 50 minutes. (b) Simulation time t = 180 minutes. 

  

(c) Simulation time t = 240 minutes. (d) Simulation time t = 300 minutes. 

Fig. 3. Density and current velocity changes 
for the first scenario simulation using Δt = 0.1 second. 

  
(a) Simulation time t = 50 minutes. (b) Simulation time t = 180 minutes. 
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(c) Simulation time t = 240 minutes. (d) Simulation time t = 300 minutes. 

Fig. 4. Density and current velocity changes 
for the first scenario simulation using Δt = 1 second. 

  
(a) Simulation time t = 50 minutes. (b) Simulation time t = 180 minutes. 

  
(c) Simulation time t = 240 minutes. (d) Simulation time t = 300 minutes. 

Fig. 5. Difference of density (ρ∆t =0 .1 - ρ∆t = 1) and current velocity (v∆t = 0.1 - v∆t=1) 
from the first scenario simulation using Δt = 0.1 second and Δt = 1 second. 
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3.2.  The second scenario 
In the second scenario, density alterations begin to emerge around the peak of the 
mountain (see Fig. 6). The density alterations were majorly caused by the changing 
currents of the water when they hit the undersea mountain. The density alterations 
accumulate and cause more interaction between the densities at each layer. Initially, 
they propagate downward and then upward towards the surface and the vertical 
currents intensify on the right side of the mountain.  

  
(a) Simulation time t = 50 minutes. (b) Simulation time t = 180 minutes. 

  
(c) Simulation time t = 240 minutes. (d) Simulation time t = 300 minutes. 

Fig. 6. Density and current velocity changes for 
second scenario simulation using Δt = 0.1 second. 

Figure 6 presents the simulations of the second scenario with the value of Δt 
= 0.1 second, where changes in currents and densities take place. In Fig. 6(a), the 
densities in every layer of depths start to experience disturbances. In the first hour 
of observation time, the most significant disturbances seem to happen above the 
peak of the mountain at the depth of 20 - 60 m under the water surface level, 
while the densities near the surface level (0 - 20 m) and between the peak of the 
mountain and the bottom level (60 - 100 m) have not yet been disturbed. The 
alterations can be clearly detected around the spatial position of x = 150 m up to 
x = 250 m from the depth of 10 m to 60 m for Δt = 0.1 second. These disturbances 
may be caused by the changes in the currents’ directions, which start to move 
vertically as they approach the mountain. The mountain turns the currents around 
its peak upward, which interrupt the densities in the above levels of depth. The 
currents stream down faster above the peak of the mountain than the ones below 
the mountain’s peak level since the currents above the mountain find no obstacle 
along with their courses. 
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After three hours of simulation, the disturbances have risen significantly and 
majorly disturbed the densities of the water in all layers of the depth, as shown in 
Fig. 6(b). Figure 6(b) shows that the densities in each layer of depth change in an 
oscillating fashion. As the simulation time runs, the densities oscillate in wider 
wavelength and higher amplitude (Figs. 6(b) to (d)). The currents’ velocities also 
increase over time and the directions become steeper, which may cause a higher 
amplitude in the density waves. In Figs. 6(b) to (d), the currents around the bottom 
of the water seem to move in the opposite direction from the ones above the 
mountain peak level. This makes the currents move in a rather circular motion, 
which may widen the density waves. 

Figure 7 presents the change of density layers and currents for the simulation 
using Δt = 1 second. In the first hour of simulation, the densities experience 
disturbances when the currents hit the mountain. It can be seen in Fig. 7(a) where 
the densities start to form layers of waves above the mountain. In this case, the 
densities seem to receive higher disturbances compared to the result in Fig. 6(a). 
In Fig. 7(a), the disturbances have reached the surface level. This simulation 
suggests that as the time increases the densities experience higher disturbances at 
the depth of below 20 m (Figs. 7(b) to (d)). The currents also move in a rather 
circular motion at this depth after they pass the mountain. However, the currents 
do not seem to be as steep as the ones in the simulation using Δt = 1 second, 
hence, the densities above 20 m do not receive a lot of disturbances and are rather 
flat instead of forming steep amplitude.  

  
(a) Simulation time t = 50 minutes. (b) Simulation time t = 180 minutes. 

  
(c) Simulation time t = 240 minutes. (d) Simulation time t = 300 minutes. 

Fig. 7. Density and current velocity changes for 
the second scenario simulation using Δt = 1 second. 
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The simulations using Δt = 0.1 second and Δt = 1 second appear to be different 
in terms of density and current changes. In the first simulation, at the first hour, the 
densities in the layers of depth near the surface are not yet affected by the 
disturbance happening in the lower layer, but they start to gradually get affected as 
the simulation time runs. Meanwhile, in the second simulation, the densities near 
the surface have been disturbed in the first hour, yet they tend to be unaffected by 
the density disturbances happening in the lower layers. The former simulation 
seems to be reasonable since the force at the lateral condition is maintained during 
the simulation, hence, the force may drive the currents to be higher in velocity as 
well as steepness. The differences are visualized in Fig. 8. In Fig. 8, it can be 
observed that even though the current differences in the first hour are very small, 
they visibly increase during the next simulation time. The figures also signify the 
density differences (Figs. 8(b) to (d)). 

Since we use the formula ρ∆t = 0.1 - ρ∆t = 1, where ρ∆t = 0.1 is the density using Δt = 
0.1 second and ρ∆t = 1 is the density using Δt = 1 second, to produce Fig. 8, ρ∆t = 0.1 is 
bigger than ρ∆t = 1, as reflected from the positive value of the difference. For the 
velocity difference, we use the formula v∆t = 0.1 - v∆t = 1. The resultant of v has two 
components, i.e., u (east-west) and w (bottom-surface) component. Therefore, if the 
current moves from the west to the east, it means u component of v∆t=0.1 is stronger 
than v∆t = 1; and if current moves from the bottom to the surface, w component of v∆t 
= 0.1 is bigger than v∆t=1. 

  
(a) Simulation time t = 50 minutes. (b) Simulation time t = 180 minutes. 

  
(c) Simulation time t = 240 minutes. (d) Simulation time t = 300 minutes. 

Fig. 8. Difference of density (ρ∆t   =  0.1 - ρ ∆ t   = 1) and current velocity (v∆t  =  0.1 - v∆t  = 1) 
from the second scenario simulation using Δt = 0.1 second and Δt = 1 second. 
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According to Stull [34], there are two formulas to determine the characteristic 
of lee waves, i.e., Froude Number, Fr, which is the ratio natural wavelength (λ) to 
mountain width (W). 

𝐹𝐹𝐹𝐹 = 𝜆𝜆
2𝑊𝑊

                                                                                                                 (8) 

and natural wavelength reads 

𝜆𝜆 = 2𝜋𝜋𝜋𝜋
𝑁𝑁𝐵𝐵𝐵𝐵

                                                                                                                 (9) 

We use oscillation at the Brunt-Vaisala frequency [26], as follows 

𝑁𝑁𝐵𝐵𝐵𝐵2 = − 𝑔𝑔
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                                                        (10) 

In this experiment, the lee waves experience three phases of wave formations 
according to the Froude number (Fr). These phases can be observed through the 
change of current waves. The first phase (Fr << 1) happens at t = 125 minutes 
when the wavelength (λ) is smaller than the mountain width (W). The second 
phase (Fr ≈ 1) happens at t = 165 minutes when the wavelength is almost the 
same as the mountain width. Finally the last phase (Fr >> 1) happens at t = 240 
minutes when the wavelength is greater as the mountain width. These results can 
be observed in Fig. 9. 

  
(a) Simulation time 

t = 125 minutes and Fr << 1. 
(b) Simulation time 

t = 165 minutes and Fr ≈ 1. 

 
(c) Simulation time t = 240 minutes and Fr>>1. 

Fig. 9. Comparisons of current wavelengths and mountain width, 
which affect the value of Fr for the simulation using Δt = 0.1. 
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These phenomena exist due to the changing values of NBV and 𝜆𝜆, which are 
affected by the continuing lateral force condition during the simulation. In Fig. 10, 
the value of NBV is not constant over time. Meanwhile, Fig. 11 displays that the 
value of λ keeps increasing over time. This value changes cause the Froude number 
(Fr) to keep increasing as shown in Fig. 12. Hence, the wavelength of the wave 
continues to increase. 

 
Fig. 10. The value of 𝑵𝑵𝑩𝑩𝑩𝑩

𝟐𝟐  versus time. 

 
Fig. 11. The value of λ versus time. 

 
Fig. 12. The value of Fr versus time. 
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3.3.  Magnitude of density changes from both scenarios 
Figures 13 and 14 present the time-series of the densities at x = 220 m at each depth 
layer for the first scenario and second scenario respectively. Both time series are 
extracted from the simulations, which use Δt = 0.1 second and display the values 
of the densities in the last two hours of the observation, which is from 180 minutes 
to 360 minutes. For the first scenario, it can be observed in Fig. 13 that at each 
depth layer, the densities are constant over time and no alteration occurs.  

 
Fig. 13. Time-series of densities at the position of x = 220 m and 

time t = 180-300 minutes for the first scenario simulation using Δt = 0.1 second. 

 
Fig. 14. Time-series of densities at the position of x = 220 m and time t = 180-

300 minutes for the second scenario simulation using Δt = 0.1 second. 
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Figure 14 exhibits the change in density for the second scenario. In the second 
scenario, the densities fluctuate throughout the observation time. Initially, the 
density at 0 - 5 m depth does not experience a significant change until the 250th 
minute, but it fluctuates. The density at the depths of 15-20 m fluctuates more and 
earlier compared to the layers above; it starts to experience a change at the time of 
210 minutes. Meanwhile, the density at the depths of 30-35 m significantly 
fluctuates after 180 minutes. All densities in these upper three layers tend to 
increase in magnitudes. At the depth of 45-50 m, 55-60 m, and 60-65 m, changes 
of the density values also happen, however, they tend to slightly fluctuate around 
constant values. At 75-80 m depth, there is a significant change in the density 
magnitude after 180 minutes, however, it seems to fluctuate around the same 
magnitude until the 230th minute and then fluctuate around the lower magnitude 
afterwards. Meanwhile, in the depth of 90-95 m, the density magnitude is constant 
until 230th minute and then starts to decrease afterwards. In overall, changes in 
density over time experience very large fluctuations at depths above and below the 
mountain peak, while changes in depth around the mountain peak (55-60 m) 
fluctuate with relatively smaller magnitudes.  

In Figs. 13 and 14, each density can be viewed as a wave. Analysis of each wave 
is carried out using the Fast Fourier Transform to generate the forming waves. From 
the results obtained from Figs. 13 and 14, the magnitudes (amplitudes) of the waves 
on the frequency domain are obtained, and they are presented in Figs. 15 and 16 for 
the first scenario and for the second scenario, respectively. 

 
Fig. 15. Plot of density magnitudes versus frequency  

domain for the first scenario simulation using Δt = 0.1 second. 
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Fig. 16. Plot of density magnitudes versus frequency  

domain in the second scenario simulation using Δt = 0.1 second. 

The spectrum of densities at each depth for the first scenario is presented in Fig. 
15. At each depth, each spectrum displays the magnitude of the density at zero 
frequency because the densities are constant with respect to time.  

Figure 16 presents the spectrum of densities for the second scenario. At each 
depth, the main waves (carrier waves) are disturbed by small magnitude waves 
creating modulation. The magnitude of modulation waves, which have significant 
magnitudes are at the upper three layers of depth, i.e., 0-5 m, 15-20 m, 30-35 m. 

Table 1 shows the magnitudes of the main waves (carrier waves) at each depth 
layer for the first and second scenarios, as well as the difference in the magnitude 
of the carrier waves from both cases. The magnitudes of the carrier waves at four 
layers of depth above the mountain peak in the second scenario are bigger than the 
ones in the first scenario, while the magnitudes in the four lower layers in the 
second scenario is smaller than the ones in the first scenario. The highest magnitude 
change happens in the depth of 30-35 m, where the magnitude difference between 
the first and the second scenarios is 0.7673. The second highest change happens in 
the depth of 15-20 m, the density difference is 0.5714. In the depths of 0-5 m, 45-
50 m, and 90-95 m, the changes of the densities are rather equal. Meanwhile, at 
depths on the mountain peak (depth of 55-60 m), the magnitude of the carrier waves 
from both scenario shows a very small difference, which is 0.0315. 
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Table 1. Comparison of carrier wave amplitude values from the density 
spectra at x = 220 m for both scenario simulations using Δt = 0.1 second. 

Z 0-5 15-20 30-35 45-50 55-60 60-65 75-80 90-95 
Magnitude of the 
carrier wave for the 
first scenario (Ac) 

0.2620 1.0479 1.8337 2.6196 3.1436 3.4055 4.1914 4.9773 

Magnitude of the 
carrier wave for the 
second scenario (Ac,sill) 

0.6884 1.6193 2.6010 3.0341 3.1121 3.1651 3.8390 4.5616 

|Ac,sill - Ac| 0.4265 0.5714 0.7673 0.4144 0.0315 0.2404 0.3524 0.4157 

4.  Conclusions 
The density distribution in the first scenario (vertical ocean slice without an 
undersea mountain) does not display any alterations for up to five hours of 
simulation, however, there is a notable increase of the horizontal current. 
Throughout the simulation time, the density at each layer remains constant. These 
results happen for the simulations with both choices of time step sizes, 0.1 second 
and 1 second, and there is no significant difference between the two simulations. 
CFL criterion does not give any visible effect to the outputs in the scenario without 
the undersea mountain. 

In the second scenario (vertical ocean slice with an undersea mountain), 
disturbances in the density distribution occur throughout the simulation time. The 
densities change due to changing the current direction of internal masses of the 
water when they pass the undersea mountain. The currents start to move vertically 
when they hit the mountain and disturb the layers of the densities above the 
mountain. The disturbances are accumulated and cause the incoming currents to 
steepen and changing their directions, which cause circular motions. This event 
gives rise to density waves, which steepen in height and widen in length. The results 
in the second scenario happen for the simulations with both choices of time step 
sizes, 0.1 second and 1 second. However, both simulation show different outputs 
regarding current velocities, density changes, and density waveforms due to time 
step value. Therefore, for the scenario with undersea mountain, the numerical 
simulation must respect to the CFL criterion. 

Based on the Froude Number, lee waves simulated in this experiment 
experience three types of waves characteristics, which happen gradually one after 
another. For the simulation of the second scenario with time step 0.1 second, the 
wavelength is smaller than the mountain width at 125 minutes of the simulation 
runtime. At 165 minutes, the wavelength becomes the same as the mountain width. 
Finally, at 240 minutes, the wavelength becomes greater as the mountain width and 
it continues to get bigger. 

The magnitudes of the carrier waves of the densities above the mountain peak 
in the second scenario are bigger than the ones in the first scenario. Meanwhile, the 
densities below the mountain peak in the second scenario are smaller than the ones 
in the first scenario. In addition, the magnitude of density at depths around the top 
of the mountain only experiences very small change.  

The results of the two scenarios (with and without mountain) suggest that the 
choices of the time step sizes do not really give a significant difference in the results 
of the first scenario simulation, however, they do in the second scenario. The time 
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step size 0.1 second is set according to CFL and gives more reasonable and stable 
simulation results, especially in the second scenario.  
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Nomenclatures 
 
Fr Froude number 
g Acceleration of gravity, m/s2 
H Depth of water or an undisturbed sea level, m 
Kh, Kz Diffusivity of horizontal and vertical densities, m2/s 
N2 Initial Brunt-Väisälä frequency, s-1 
𝑁𝑁𝐵𝐵𝐵𝐵2  Brunt-Väisälä frequency from the simulation, s-1 
p Dynamic pressure, kg/ms2 
q The nonhydrostatic pressure field, kg/ms2 
qs The nonhydrostatic pressure field at surface, kg/ms2 
u Horizontal velocity, m/s 
W Mountain width, m 
w Vertical velocity, m/s 
 
Greek Symbols 
∆t Time-step, s 
∆x, ∆z Distance spacing in horizontal and vertical, respectively, m 
λ Natural wavelength, m 
ρ Depth-variable part of density, kg/m3 

ρ0 Constant reference density at the surface, kg/m3 
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Appendix A 

Pseudocode and Algorithm 
A.1. Initialization 

Pseudocode below describes the initialization of the variables in the program: 

nx = 101   {horizontal dimension} 
nz = 21    {vertical dimension} 
G = 9.81   {acceleration due to gravity} 
RHOREF = 1028.0  {reference density} 
nt = 5*60*60 {runtime parameters} 
dx = 5.0 
dz = 5.0 
dt = 0.1 
kh = 1.e-4 
kz = 1.e-4  
N2 = 5e-4   {stability frequency squared} 
 
{set initial arrays} 
FOR i = 0 TO nz+10 DO 

FOR k = 0 TO nx+1 DO 
 p(i,k) = 0.0 
 q(i,k) = 0.0 
 rho(i,k) = RHOREF 
 u(i,k) = 0.0 
 w(i,k) = 0.0 

 END 
END 
 
{ambient density stratification} 
FOR k = 0 TO nx+1 

FOR i = 0 TO nz+1 
 IF i == 0 THEN 
 rho(i,k) = RHOREF 
 ELSE 
 rho(i,k) = rho(i-1)+N2*RHOREF/g*dz 
 END 
END DO 

END DO 
 
{idealised bathymetry} 
FOR k = 1 TO nx DO 

depth(k) = 100 
END DO 
FOR k = 21 TO 40 DO 

 depth(k) = depth(k)-20*(1-COS((k-20)/20*2*PI)) 
END DO 
 
{ambient forcing} 
force = dt*g*0.005/nx/dx 
 
{lateral boundary conditions - cyclic boundary conditions} 
q(0,0) = q(0,nx) 
q(0,nx+1) = q(0,1) 
FOR i = 1 TO nz DO 

 u(i,0) = u(i,nx) 
 u(i,nx+1) = u(i,1) 
 w(i,0) = w(i,nx) 
 w(i,nx+1) = w(i,1) 
 q(i,0) = q(i,nx) 
 q(i,nx+1) = q(i,1) 

END DO 
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Appendix B 

B.2. Algorithm of the S.O.R. Method 

The following steps present the algorithm of S.O.R. method implemented in 
this research: 

a. Time iteration, for n = 1 to nt = 5*60*60 (runtime parameters) 
b. 𝑢𝑢𝑛𝑛,𝑤𝑤𝑛𝑛 , 𝑞𝑞𝑛𝑛 →  𝑢𝑢∗,𝑤𝑤∗, 𝑞𝑞∗ 
c. ∆𝑞𝑞𝑛𝑛 →  ∆𝑞𝑞𝑟𝑟=0 
d. S.O.R. iteration 
e. ∆𝑞𝑞𝑟𝑟 → ∆𝑞𝑞𝑟𝑟+1 
f. ∆𝑞𝑞𝑟𝑟+1 → 𝑢𝑢𝑟𝑟+1,𝑤𝑤𝑟𝑟+1 
g. 𝑢𝑢𝑟𝑟+1 → ∆𝑞𝑞𝑠𝑠𝑟𝑟+1 
h. If |∆𝑞𝑞𝑟𝑟+1 − ∆𝑞𝑞𝑟𝑟| < 𝜀𝜀 then𝑢𝑢𝑟𝑟+1 ,𝑤𝑤𝑟𝑟+1 , ∆𝑞𝑞𝑟𝑟+1 → 𝑢𝑢𝑛𝑛+1 , 𝑤𝑤𝑛𝑛+1 , 𝑞𝑞𝑛𝑛+1and 𝑛𝑛 +

1 →  𝑛𝑛 , repeat all steps. If this condition is not satisfied, then 𝑟𝑟 + 1 →  𝑟𝑟, 
repeat steps d-h. 

 


